Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Biomolecules & Therapeutics ; : 193-199, 2023.
Article in English | WPRIM | ID: wpr-966422

ABSTRACT

In this investigation, we made a study of the efficacy of luteolin (a flavonoid found in plants such as vegetables, herbs and fruits) on vascular contractibility and to elucidate the mechanism underlying the relaxation. Isometric contractions of denuded muscles were stored and combined with western blot analysis which was conducted to assess the phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) and phosphorylation-dependent inhibitory protein for myosin phosphatase (CPI-17) and to examine the effect of luteolin on the RhoA/ROCK/CPI-17 pathway. Luteolin significantly alleviated phorbol ester-, fluoride- and thromboxane mimetic-elicited contractions regardless of endothelial nitric oxide synthesis, implying its direct effect on smooth muscle. It also significantly alleviated the fluoride-elicited elevation in pCPI-17 and pMYPT1 levels and phorbol 12,13-dibutyrate-elicited in-crease in pERK1/2 level, suggesting depression of ROCK and PKC/MEK activity and ensuing phosphorylation of MYPT1, CPI-17 and ERK1/2. Taken together, these results suggest that luteolin-elicited relaxation includes myosin phosphatase reactivation and calcium desensitization, which seems to be arbitrated by CPI-17 dephosphorylation via ROCK/PKC inhibition.

2.
Biomolecules & Therapeutics ; : 145-150, 2022.
Article in English | WPRIM | ID: wpr-925608

ABSTRACT

In this study, we investigated the influence of galangin on vascular contractibility and to determine the mechanism underlying the relaxation. Isometric contractions of denuded aortic muscles were recorded and combined with western blot analysis which was performed to measure the phosphorylation of phosphorylation-dependent inhibitory protein of myosin phosphatase (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) and to evaluate the effect of galangin on the RhoA/ROCK/CPI-17 pathway.Galangin significantly inhibited phorbol ester-, fluoride- and thromboxane mimetic-induced vasoconstrictions regardless of endothelial nitric oxide synthesis, suggesting its direct effect on vascular smooth muscle. Galangin significantly inhibited the fluoridedependent increase in pMYPT1 and pCPI-17 levels and phorbol 12,13-dibutyrate-dependent increase in pERK1/2 level, suggesting repression of ROCK and MEK activity and subsequent phosphorylation of MYPT1, CPI-17 and ERK1/2. Taken together, these results suggest that galangin-induced relaxation involves myosin phosphatase reactivation and calcium desensitization, which appears to be mediated by CPI-17 dephosphorylation via not PKC but ROCK inactivation.

3.
Biomolecules & Therapeutics ; : 348-359, 2022.
Article in English | WPRIM | ID: wpr-937230

ABSTRACT

Gastric adenocarcinoma is among the top causes of cancer-related death and is one of the most commonly diagnosed carcinomas worldwide. Benzyl isothiocyanate (BITC) has been reported to inhibit the gastric cancer metastasis. In our previous study, BITC induced apoptosis in AGS cells. The purpose of the present study was to investigate the effect of BITC on autophagy mechanism in AGS cells. First, the AGS cells were treated with 5, 10, or 15 μM BITC for 24 h, followed by an analysis of the autophagy mechanism. The expression level of autophagy proteins involved in different steps of autophagy, such as LC3B, p62/SQSTM1, Atg5-Atg12, Beclin1, p-mTOR/mTOR ratio, and class III PI3K was measured in the BITC-treated cells. Lysosomal function was investigated using cathepsin activity and Bafilomycin A1, an autophagy degradation stage inhibitor. Methods including qPCR, western blotting, and immunocytochemistry were employed to detect the protein expression levels. Acridine orange staining and omnicathepsin assay were conducted to analyze the lysosomal function. siRNA transfection was performed to knock down the LC3B gene. BITC reduced the level of autophagy protein such as Beclin 1, class III PI3K, and Atg5-Atg12. BITC also induced lysosomal dysfunction which was shown as reducing cathepsin activity, protein level of cathepsin, and enlargement of acidic vesicle. Overall, the results showed that the BITC-induced AGS cell death mechanism also comprises the inhibition of the cytoprotective autophagy at both initiation and degradation steps.

4.
The Korean Journal of Physiology and Pharmacology ; : 507-515, 2021.
Article in English | WPRIM | ID: wpr-919333

ABSTRACT

Postoperative ileus (POI), a symptom that occurs after abdominal surgery, reduces gastrointestinal motility. Although its mechanism is unclear, POI symptoms are known to be caused by inflammation 6 to 72 h after surgery. As proton pump inhibitors exhibit protective effect against acute inflammation, the purpose of this study was to determine the effect of ilaprazole on a POI rat model. POI was induced in rats by abdominal surgery. Rats were divided into six groups: control: normal rat + 0.5% CMC-Na, vehicle: POI rat + 0.5% CMC-Na, mosapride: POI rat + mosapride 2 mg/kg, ilaprazole 1 mg/kg: POI rat + ilaprazole 1 mg/kg, ilaprazole 3 mg/kg: POI rat + ilaprazole 3 mg/kg, and ilaprazole 10 mg/kg: POI rat + ilaprazole 10 mg/kg. Gastrointestinal motility was confirmed by measuring gastric emptying (GE) and gastrointestinal transit (GIT). In the small intestine, inflammation was confirmed by measuring TNF-α and IL-1β; oxidative stress was confirmed by SOD, GSH, and MDA levels; and histological changes were observed by H&E staining. Based on the findings, GE and GIT were decreased in the vehicle group and improved in the ilaprazole 10 mg/kg group. In the ilaprazole 10 mg/kg group, TNF-α and IL-1β levels were decreased, SOD and GSH levels were increased, and MDA levels were decreased. Histological damage was also reduced in the ilaprazole-treated groups. These findings suggest that ilaprazole prevents the decrease in gastrointestinal motility, a major symptom of postoperative ileus, and reduces inflammation and oxidative stress.

5.
Biomolecules & Therapeutics ; : 419-426, 2021.
Article in English | WPRIM | ID: wpr-897306

ABSTRACT

In this study, we aimed to investigate the effects of 8 weeks of treatment with a combination of evogliptin and leucine, a branchedchain amino acid, in mice with high-fat diet (HFD)-induced diabetes. Treatment with evogliptin alone or in combination with leucine reduced the body weight of the mice, compared to the case for those from the HFD control group. Long-term treatment with evogliptin alone or in combination with leucine resulted in a significant reduction in glucose intolerance; however, leucine alone did not affect postprandial glucose control, compared to the case for the mice from the HFD control group. Furthermore, the combination of evogliptin and leucine prevented HFD-induced insulin resistance, which was associated with improved homeostasis model assessment for insulin resistance, accompanied by markedly reduced liver fat deposition, hepatic triglyceride content, and plasma alanine aminotransferase levels. The combination of evogliptin and leucine increased the gene expression levels of hepatic peroxisome proliferator-activated receptor alpha, whereas those of the sterol regulatory element-binding protein 1 and stearoyl-CoA desaturase 1 were not altered, compared to the case in the HFD-fed mice (p<0.05). Thus, our results suggest that the combination of evogliptin and leucine may be beneficial for treating patients with type 2 diabetes and hepatic steatosis; however, further studies are needed to delineate the molecular mechanisms underlying the action of this combination.

6.
Biomolecules & Therapeutics ; : 353-364, 2021.
Article in English | WPRIM | ID: wpr-897299

ABSTRACT

The gastrointestinal (GI) tract is a series of hollow organs that is responsible for the digestion and absorption of ingested foods and the excretion of waste. Any changes in the GI tract can lead to GI disorders. GI disorders are highly prevalent in the population and account for substantial morbidity, mortality, and healthcare utilization. GI disorders can be functional, or organic with structural changes. Functional GI disorders include functional dyspepsia and irritable bowel syndrome. Organic GI disorders include inflammation of the GI tract due to chronic infection, drugs, trauma, and other causes. Recent studies have highlighted a new explanatory mechanism for GI disorders. It has been suggested that autophagy, an intracellular homeostatic mechanism, also plays an important role in the pathogenesis of GI disorders. Autophagy has three primary forms: macroautophagy, microautophagy, and chaperone-mediated autophagy. It may affect intestinal homeostasis, host defense against intestinal pathogens, regulation of the gut microbiota, and innate and adaptive immunity. Drugs targeting autophagy could, therefore, have therapeutic potential for treating GI disorders. In this review, we provide an overview of current understanding regarding the evidence for autophagy in GI diseases and updates on potential treatments, including drugs and complementary and alternative medicines.

7.
Biomolecules & Therapeutics ; : 419-426, 2021.
Article in English | WPRIM | ID: wpr-889602

ABSTRACT

In this study, we aimed to investigate the effects of 8 weeks of treatment with a combination of evogliptin and leucine, a branchedchain amino acid, in mice with high-fat diet (HFD)-induced diabetes. Treatment with evogliptin alone or in combination with leucine reduced the body weight of the mice, compared to the case for those from the HFD control group. Long-term treatment with evogliptin alone or in combination with leucine resulted in a significant reduction in glucose intolerance; however, leucine alone did not affect postprandial glucose control, compared to the case for the mice from the HFD control group. Furthermore, the combination of evogliptin and leucine prevented HFD-induced insulin resistance, which was associated with improved homeostasis model assessment for insulin resistance, accompanied by markedly reduced liver fat deposition, hepatic triglyceride content, and plasma alanine aminotransferase levels. The combination of evogliptin and leucine increased the gene expression levels of hepatic peroxisome proliferator-activated receptor alpha, whereas those of the sterol regulatory element-binding protein 1 and stearoyl-CoA desaturase 1 were not altered, compared to the case in the HFD-fed mice (p<0.05). Thus, our results suggest that the combination of evogliptin and leucine may be beneficial for treating patients with type 2 diabetes and hepatic steatosis; however, further studies are needed to delineate the molecular mechanisms underlying the action of this combination.

8.
Biomolecules & Therapeutics ; : 353-364, 2021.
Article in English | WPRIM | ID: wpr-889595

ABSTRACT

The gastrointestinal (GI) tract is a series of hollow organs that is responsible for the digestion and absorption of ingested foods and the excretion of waste. Any changes in the GI tract can lead to GI disorders. GI disorders are highly prevalent in the population and account for substantial morbidity, mortality, and healthcare utilization. GI disorders can be functional, or organic with structural changes. Functional GI disorders include functional dyspepsia and irritable bowel syndrome. Organic GI disorders include inflammation of the GI tract due to chronic infection, drugs, trauma, and other causes. Recent studies have highlighted a new explanatory mechanism for GI disorders. It has been suggested that autophagy, an intracellular homeostatic mechanism, also plays an important role in the pathogenesis of GI disorders. Autophagy has three primary forms: macroautophagy, microautophagy, and chaperone-mediated autophagy. It may affect intestinal homeostasis, host defense against intestinal pathogens, regulation of the gut microbiota, and innate and adaptive immunity. Drugs targeting autophagy could, therefore, have therapeutic potential for treating GI disorders. In this review, we provide an overview of current understanding regarding the evidence for autophagy in GI diseases and updates on potential treatments, including drugs and complementary and alternative medicines.

9.
The Korean Journal of Physiology and Pharmacology ; : 385-394, 2020.
Article in English | WPRIM | ID: wpr-903931

ABSTRACT

Eupatilin is known to possess anti-apoptotic, anti-oxidative, and antiinflammatoryproperties. We report here that eupatilin has a protective effect onthe ethanol-induced injury in rats. Sprague–Dawley rats were divided into 6 groups:control, vehicle, silymarin, eupatilin 10 mg/kg, eupatilin 30 mg/kg, and eupatilin 100mg/kg. Plasma levels of aspartate aminotransferase (AST) and alanine aminotransferase(ALT) were analyzed to determine the extent of liver damage. Total cholesterol(TC) and triglycerides (TG) were analyzed to determine the level of liver steatosis.Malondialdehyde level, superoxide dismutase (SOD) activity, and glutathione (GSH)level were analyzed to determine the extent of oxidative stress. Tumor necrosis factor(TNF)- and interleukin (IL)-1 were quantified to verify the degree of inflammation.Based on our findings, chronic alcohol treatment significantly changed the serumindexes and liver indicators of the model rats, which were significantly improved byeupatilin treatment. Rats in the eupatilin-treatment group showed reduced levelsof AST, ALT, TG, TC, TNF-, and IL-1, increased SOD activity and GSH levels, and improvedoverall physiology compared to the alcoholic liver disease model rats. H&Estaining also verified the eupatilin-mediated improvement in liver injury. In conclusion,eupatilin inhibits alcohol-induced liver injury via its antioxidant and anti-inflammatoryeffects.

10.
Biomolecules & Therapeutics ; : 202-210, 2020.
Article | WPRIM | ID: wpr-830943

ABSTRACT

Fluoxetine is used widely as an antidepressant for the treatment of cancer-related depression, but has been reported to also have anti-cancer activity. In this study, we investigated the cytotoxicity of fluoxetine to human gastric adenocarcinoma cells; as shown by the MTT assay, fluoxetine induced cell death. Subsequently, cells were treated with 10 or 20 μM fluoxetine for 24 h and analyzed. Apoptosis was confirmed by the increased number of early apoptotic cells, shown by Annexin V-propidium iodide staining. Nuclear condensation was visualized by DAPI staining. A significant increase in the expression of cleaved PARP was observed by western blotting. The pan-caspase inhibitor Z-VAD-FMK was used to detect the extent of caspase-dependent cell death. The induction of autophagy was determined by the formation of acidic vesicular organelles (AVOs), which was visualized by acridine orange staining, and the increased expression of autophagy markers, such as LC3B, Beclin 1, and p62/SQSTM 1, observed by western blotting. The expression of upstream proteins, such as p-Akt and p-mTOR, were decreased. Autophagic degradation was evaluated by using bafilomycin, an inhibitor of late-stage autophagy. Bafilomycin did not significantly enhance LC3B expression induced by fluoxetine, which suggested autophagic degradation was impaired. In addition, the co-administration of the autophagy inhibitor 3-methyladenine and fluoxetine significantly increased fluoxetine-induced apoptosis, with decreased p-Akt and markedly increased death receptor 4 and 5 expression. Our results suggested that fluoxetine simultaneously induced both protective autophagy and apoptosis and that the inhibition of autophagy enhanced fluoxetine-induced apoptosis through increased death receptor expression.

11.
Biomolecules & Therapeutics ; : 328-336, 2020.
Article | WPRIM | ID: wpr-830929

ABSTRACT

Diabetes mellitus affects the colonic motility developing gastrointestinal symptoms, such as constipation. The aim of the study was to examine the role of intracellular signaling pathways contributing to colonic dysmotility in diabetes mellitus. To generate diabetes mellitus, the rats were injected by a single high dose of streptozotocin (65 mg/kg) intraperitoneally. The proximal colons from both normal and diabetic rats were contracted by applying an electrical field stimulation with pulse voltage of 40 V in amplitude and pulse duration of 1 ms at frequencies of 1, 2, 4, and 6 Hz. The muscle strips from both normal rats and rats with diabetes mellitus were pretreated with different antagonists and inhibitors. Rats with diabetes mellitus had lower motility than the control group. There were significant differences in the percentage of inhibition of contraction between normal rats and rats with diabetes mellitus after the incubation of tetrodotoxin (neuronal blocker), atropine (muscarinic receptor antagonist), prazosin (α1 adrenergic receptor antagonist), DPCPX (adenosine A1 receptor antagonist), verapamil (L-type Ca2+ channel blocker), U73122 (PLC inhibitor), ML-9 (MLCK inhibitor), udenafil (PDE5 inhibitor), and methylene blue (guanylate cyclase inhibitor). The protein expression of p-MLC and PDE5 were decreased in the diabetic group compared to the normal group. These results showed that the reduced colonic contractility resulted from the impaired neuronal conduction and decreased muscarinic receptor sensitivity, which resulted in decreased phosphorylation of MLC via MLCK, and cGMP activity through PDE5.

12.
The Korean Journal of Physiology and Pharmacology ; : 385-394, 2020.
Article in English | WPRIM | ID: wpr-896227

ABSTRACT

Eupatilin is known to possess anti-apoptotic, anti-oxidative, and antiinflammatoryproperties. We report here that eupatilin has a protective effect onthe ethanol-induced injury in rats. Sprague–Dawley rats were divided into 6 groups:control, vehicle, silymarin, eupatilin 10 mg/kg, eupatilin 30 mg/kg, and eupatilin 100mg/kg. Plasma levels of aspartate aminotransferase (AST) and alanine aminotransferase(ALT) were analyzed to determine the extent of liver damage. Total cholesterol(TC) and triglycerides (TG) were analyzed to determine the level of liver steatosis.Malondialdehyde level, superoxide dismutase (SOD) activity, and glutathione (GSH)level were analyzed to determine the extent of oxidative stress. Tumor necrosis factor(TNF)- and interleukin (IL)-1 were quantified to verify the degree of inflammation.Based on our findings, chronic alcohol treatment significantly changed the serumindexes and liver indicators of the model rats, which were significantly improved byeupatilin treatment. Rats in the eupatilin-treatment group showed reduced levelsof AST, ALT, TG, TC, TNF-, and IL-1, increased SOD activity and GSH levels, and improvedoverall physiology compared to the alcoholic liver disease model rats. H&Estaining also verified the eupatilin-mediated improvement in liver injury. In conclusion,eupatilin inhibits alcohol-induced liver injury via its antioxidant and anti-inflammatoryeffects.

13.
Biomolecules & Therapeutics ; : 101-106, 2019.
Article in English | WPRIM | ID: wpr-719635

ABSTRACT

Most diabetic patients experience diabetic mellitus (DM) urinary bladder dysfunction. A number of studies evaluate bladder smooth muscle contraction in DM. In this study, we evaluated the change of bladder smooth muscle contraction between normal rats and DM rats. Furthermore, we used pharmacological inhibitors to determine the differences in the signaling pathways between normal and DM rats. Rats in the DM group received an intraperitoneal injection of 65 mg/kg streptozotocin and measured blood glucose level after 14 days to confirm DM. Bladder smooth muscle contraction was induced using acetylcholine (ACh, 10⁻⁴ M). The materials such as, atropine (a muscarinic receptor antagonist), U73122 (a phospholipase C inhibitor), DPCPX (an adenosine A1 receptor antagonist), udenafil (a PDE5 inhibitor), prazosin (an α₁-receptor antagonist), papaverine (a smooth muscle relaxant), verapamil (a calcium channel blocker), and chelerythrine (a protein kinase C inhibitor) were pre-treated in bladder smooth muscle. We found that the DM rats had lower bladder smooth muscle contractility than normal rats. When prazosin, udenafil, verapamil, and U73122 were pre-treated, there were significant differences between normal and DM rats. Taken together, it was concluded that the change of intracellular Ca²⁺ release mediated by PLC/IP3 and PDE5 activity were responsible for decreased bladder smooth muscle contractility in DM rats.


Subject(s)
Animals , Humans , Rats , Acetylcholine , Atropine , Blood Glucose , Calcium Channels , Injections, Intraperitoneal , Muscle, Smooth , Papaverine , Prazosin , Protein Kinase C , Receptor, Adenosine A1 , Receptors, Muscarinic , Streptozocin , Type C Phospholipases , Urinary Bladder , Verapamil
14.
The Korean Journal of Physiology and Pharmacology ; : 263-270, 2019.
Article in English | WPRIM | ID: wpr-761790

ABSTRACT

Hydrogen sulfide is well-known to exhibit anti-inflammatory and cytoprotective activities, and also has protective effects in the liver. This study aimed to examine the protective effect of hydrogen sulfide in rats with hepatic encephalopathy, which was induced by mild bile duct ligation. In this rat model, bile ducts were mildly ligated for 26 days. Rats were treated for the final 5 days with sodium hydrosulfide (NaHS). NaHS (25 µmol/kg), 0.5% sodium carboxymethyl cellulose, or silymarin (100 mg/kg) was administered intraperitoneally once per day for 5 consecutive days. Mild bile duct ligation caused hepatotoxicity and inflammation in rats. Intraperitoneal NaHS administration reduced levels of aspartate aminotransferase and alanine aminotransferase, which are indicators of liver disease, compared to levels in the control mild bile duct ligation group. Levels of ammonia, a major causative factor of hepatic encephalopathy, were also significantly decreased. Malondialdehyde, myeloperoxidase, catalase, and tumor necrosis factor-α levels were measured to confirm antioxidative and anti-inflammatory effects. N-Methyl-D-aspartic acid (NMDA) receptors with neurotoxic activity were assessed for subunit NMDA receptor subtype 2B. Based on these data, NaHS is suggested to exhibit hepatoprotective effects and guard against neurotoxicity through antioxidant and anti-inflammatory actions.


Subject(s)
Animals , Rats , Alanine Transaminase , Ammonia , Aspartate Aminotransferases , Bile Ducts , Carboxymethylcellulose Sodium , Catalase , Hepatic Encephalopathy , Hydrogen Sulfide , Inflammation , Ligation , Liver , Liver Diseases , Malondialdehyde , Models, Animal , N-Methylaspartate , Necrosis , Peroxidase , Silymarin , Sodium
15.
Biomolecules & Therapeutics ; : 546-552, 2018.
Article in English | WPRIM | ID: wpr-717999

ABSTRACT

A comprehensive collection of proteins senses local changes in intracellular Ca²⁺ concentrations ([Ca²⁺](i) and transduces these signals into responses to agonists. In the present study, we examined the effect of sphingosine-1-phosphate (S1P) on modulation of intracellular Ca²⁺ concentrations in cat esophageal smooth muscle cells. To measure [Ca²⁺](i) levels in cat esophageal smooth muscle cells, we used a fluorescence microscopy with the Fura-2 loading method. S1P produced a concentration-dependent increase in [Ca²⁺](i) in the cells. Pretreatment with EGTA, an extracellular Ca²⁺ chelator, decreased the S1P-induced increase in [Ca²⁺](i), and an L-type Ca²⁺-channel blocker, nimodipine, decreased the effect of S1P. This indicates that Ca²⁺ influx may be required for muscle contraction by S1P. When stimulated with thapsigargin, an intracellular calcium chelator, or 2-Aminoethoxydiphenyl borate (2-APB), an InsP₃ receptor blocker, the S1P-evoked increase in [Ca²⁺](i) was significantly decreased. Treatment with pertussis toxin (PTX), an inhibitor of G(i)-protein, suppressed the increase in [Ca²⁺](i) evoked by S1P. These results suggest that the S1P-induced increase in [Ca²⁺](i) in cat esophageal smooth muscle cells occurs upon the activation of phospholipase C and subsequent release of Ca²⁺ from the InsP₃-sensitive Ca²⁺ pool in the sarcoplasmic reticulum. These results suggest that S1P utilized extracellular Ca²⁺ via the L type Ca²⁺ channel, which was dependent on activation of the S1P₄ receptor coupled to PTX-sensitive G(i) protein, via phospholipase C-mediated Ca²⁺ release from the InsP₃-sensitive Ca²⁺ pool in cat esophageal smooth muscle cells.


Subject(s)
Animals , Cats , Calcium , Egtazic Acid , Fura-2 , Methods , Microscopy, Fluorescence , Muscle Contraction , Muscle, Smooth , Myocytes, Smooth Muscle , Nimodipine , Pertussis Toxin , Phospholipases , Sarcoplasmic Reticulum , Thapsigargin , Type C Phospholipases
16.
Biomolecules & Therapeutics ; : 374-379, 2018.
Article in English | WPRIM | ID: wpr-715617

ABSTRACT

In this study, we investigated the effects of pelargonidin, an anthocyanidin found in many fruits and vegetables, on endothelium-independent vascular contractility to determine the underlying mechanism of relaxation. Isometric contractions of denuded aortic muscles from male rats were recorded, and the data were combined with those obtained in western blot analysis. Pelargonidin significantly inhibited fluoride-, thromboxane A2-, and phorbol ester-induced vascular contractions, regardless of the presence or absence of endothelium, suggesting a direct effect of the compound on vascular smooth muscles via a different pathway. Pelargonidin significantly inhibited the fluoride-dependent increase in the level of myosin phosphatase target subunit 1 (MYPT1) phosphorylation at Thr-855 and the phorbol 12,13-dibutyrate-dependent increase in the level of extracellular signal-regulated kinase (ERK) 1/2 phosphorylation at Thr202/Tyr204, suggesting the inhibition of Rho-kinase and mitogen-activated protein kinase kinase (MEK) activities and subsequent phosphorylation of MYPT1 and ERK1/2. These results suggest that the relaxation effect of pelargonidin on agonist-dependent vascular contractions includes inhibition of Rho-kinase and MEK activities, independent of the endothelial function.


Subject(s)
Animals , Humans , Male , Rats , Anthocyanins , Aorta , Blotting, Western , Endothelium , Fluorides , Fruit , Isometric Contraction , Muscle, Smooth, Vascular , Muscles , Myosin-Light-Chain Phosphatase , Phosphorylation , Phosphotransferases , Protein Kinases , Relaxation , rho-Associated Kinases , Vasoconstriction , Vegetables
17.
The Korean Journal of Physiology and Pharmacology ; : 577-584, 2018.
Article in English | WPRIM | ID: wpr-727866

ABSTRACT

Bladder dysfunction is a common complication of diabetes mellitus (DM). However, there have been a few studies evaluating bladder smooth muscle contraction in DM in the presence of pharmacological inhibitors. In the present study, we compared the contractility of bladder smooth muscle from normal rats and DM rats. Furthermore, we utilized pharmacological inhibitors to delineate the mechanisms underlying bladder muscle differences between normal and DM rats. DM was established in 14 days after using a single injection of streptozotocin (65 mg/kg, intraperitoneal) in Sprague-Dawley rats. Bladder smooth muscle contraction was induced electrically using electrical field stimulation consisting of pulse trains at an amplitude of 40 V and pulse duration of 1 ms at frequencies of 2–10 Hz. In this study, the pharmacological inhibitors atropine (muscarinic receptor antagonist), U73122 (phospholipase C inhibitor), DPCPX (adenosine A₁ receptor antagonist), udenafil (PDE5 inhibitor), prazosin (α₁-receptor antagonist), verapamil (calcium channel blocker), and chelerythrine (protein kinase C inhibitor) were used to pretreat bladder smooth muscles. It was found that the contractility of bladder smooth muscles from DM rats was lower than that of normal rats. In addition, there were significant differences in percent change of contractility between normal and DM rats following pretreatment with prazosin, udenafil, verapamil, and U73122. In conclusion, we suggest that the decreased bladder muscle contractility in DM rats was a result of perturbations in PLC/IP₃-mediated intracellular Ca²⁺ release and PDE5 activity.


Subject(s)
Animals , Rats , Atropine , Diabetes Mellitus , Muscle, Smooth , Phosphotransferases , Prazosin , Rats, Sprague-Dawley , Streptozocin , Type C Phospholipases , Urinary Bladder , Verapamil
18.
The Korean Journal of Physiology and Pharmacology ; : 277-289, 2018.
Article in English | WPRIM | ID: wpr-728614

ABSTRACT

The exponential increase in the use of mobile communication has triggered public concerns about the potential adverse effects of radiofrequency electromagnetic fields (RF-EMF) emitted by mobile phones on the central nervous system (CNS). In this study, we explored the relationship between calcium channels and apoptosis or autophagy in the hippocampus of C57BL/6 mice after RF-EMF exposure with a specific absorption rate (SAR) of 4.0 W/kg for 4 weeks. Firstly, the expression level of voltage-gated calcium channels (VGCCs), a key regulator of the entry of calcium ions into the cell, was confirmed by immunoblots. We investigated and confirmed that pan-calcium channel expression in hippocampal neurons were significantly decreased after exposure to RF-EMF. With the observed accumulation of autolysosomes in hippocampal neurons via TEM, the expressions of autophagy-related genes and proteins (e.g., LC3B-II) had significantly increased. However, down-regulation of the apoptotic pathway may contribute to the decrease in calcium channel expression, and thus lower levels of calcium in hippocampal neurons. These results suggested that exposure of RF-EMF could alter intracellular calcium homeostasis by decreasing calcium channel expression in the hippocampus; presumably by activating the autophagy pathway, while inhibiting apoptotic regulation as an adaptation process for 835 MHz RF-EMF exposure.


Subject(s)
Animals , Mice , Absorption , Apoptosis , Autophagy , Calcium Channels , Calcium , Cell Phone , Central Nervous System , Down-Regulation , Electromagnetic Fields , Hippocampus , Homeostasis , Ions , Neurons
19.
Biomolecules & Therapeutics ; : 139-145, 2018.
Article in English | WPRIM | ID: wpr-713582

ABSTRACT

The present study was undertaken to investigate the influence of hypothermia on endothelium-independent vascular smooth muscle contractility and to determine the mechanism underlying the relaxation. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Hypothermia significantly inhibited fluoride-, thromboxane A2-, phenylephrine-, and phorbol ester-induced vascular contractions regardless of endothelial nitric oxide synthesis, suggesting that another pathway had a direct effect on vascular smooth muscle. Hypothermia significantly inhibited the fluoride-induced increase in pMYPT1 level and phorbol ester-induced increase in pERK1/2 level, suggesting inhibition of Rho-kinase and MEK activity and subsequent phosphorylation of MYPT1 and ERK1/2. These results suggest that the relaxing effect of moderate hypothermia on agonist-induced vascular contraction regardless of endothelial function involves inhibition of Rho-kinase and MEK activities.


Subject(s)
Animals , Humans , Male , Rats , Fluorides , Hypothermia , Isometric Contraction , Muscle, Smooth, Vascular , Nitric Oxide , Phosphorylation , Relaxation , rho-Associated Kinases
20.
Biomolecules & Therapeutics ; : 274-281, 2018.
Article in English | WPRIM | ID: wpr-714739

ABSTRACT

A previous study in humans demonstrated the sustained inhibitory effects of donepezil on acetylcholinesterase (AChE) activity; however, the effective concentration of donepezil in humans and animals is unclear. This study aimed to characterize the effective concentration of donepezil on AChE inhibition and impaired learning and memory in rodents. A pharmacokinetic study of donepezil showed a mean peak plasma concentration of donepezil after oral treatment (3 and 10 mg/kg) of approximately 1.2 ± 0.4 h and 1.4 ± 0.5 h, respectively; absolute bioavailability was calculated as 3.6%. Further, AChE activity was inhibited by increasing plasma concentrations of donepezil, and a maximum inhibition of 31.5 ± 5.7% was observed after donepezil treatment in hairless rats. Plasma AChE activity was negatively correlated with plasma donepezil concentration. The pharmacological effects of donepezil are dependent upon its concentration and AChE activity; therefore, we assessed the effects of donepezil on learning and memory using a Y-maze in mice. Donepezil treatment (3 mg/kg) significantly prevented the progression of scopolamine-induced memory impairment in mice. As the concentration of donepezil in the brain increased, the recovery of spontaneous alternations also improved; maximal improvement was observed at 46.5 ± 3.5 ng/g in the brain. In conclusion, our findings suggest that the AChE inhibitory activity and pharmacological effects of donepezil can be predicted by the concentration of donepezil. Further, 46.5 ± 3.5 ng/g donepezil is an efficacious target concentration in the brain for treating learning and memory impairment in rodents.


Subject(s)
Animals , Humans , Mice , Acetylcholinesterase , Biological Availability , Brain , Learning , Memory , Plasma , Rats, Hairless , Rodentia
SELECTION OF CITATIONS
SEARCH DETAIL